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The solution of large sets of equations is required when discrete 
methods are used to solve fluid f low and heat transfer problems. 
Although the cost of the solution is often a drawback when the number 
of equations in the set becomes large, higher order numerical methods 
can be employed in the discretization of differential equations to 
decrease the number of equations without losing accuracy. For exam- 
ple, using a fourth-order difference scheme instead of a second-order 
one would reduce the number of equations by approximately half while 
preserving the same accuracy. In a recent paper, Gupta has developed 
a fourth-order compact method for the numerical solution of 
Navier-Stokes equations. In this paper we propose a defect-correction 
form of the high order approximations using multigrid techniques. We 
also derive a fourth-order approximation to the boundary conditions to 
be consistent with the fourth-order discretization of the underlying dif- 
ferential equations. The convergence analysis will be discussed for the 
parameterized form of a general second-order correction difference 
scheme which includes a fourth-order scheme as a special case. 
@~ 1994 Academic Press, Inc. 

1. INTRODUCTION 

Consider the two-dimensional convection-diffusion 
problem given by 

&2z &2z Oz Oz 
Ox2 + ~y2 + p(x, y ) ~ x +  q(x, y)-~y= f (x ,  y) (1) 

wich we will use as the basis for the study of the two- 
dimensional Navier-Stokes equations for steady flow of an 
incompressible viscous fluid. The discretized form of these 
equations often requires the solution of a large system of 
equations. For such large problems, iterative solvers 
become attractive for their low storage requirements as long 
as convergence is guaranteed. The performance of iterative 
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methods is sensitive to the number of equations to be 
solved, the type of boundary conditions applied and other 
factors. In particular, if the number of equations or the 
Reynolds number  increases, the rate of convergence of an 
iterative procedure often deteriorates. Hence, an increase in 
the number of equations to be solved is associated with a 
higher cost per iteration, thereby limiting the practical size 
of the problem that can be solved. Applying a higher order 
method which decreases the number of equations while 
preserving a high accuracy can partially alleviate this 
problem. In particular, a fourth-order discretized difference 
scheme rather than a second-order scheme can reduce the 
number of equations by approximately half. Consequently 
in this paper we consider a fourth-order approach to the 
solution of the Navier-Stokes problem. Thus a fourth-order 
difference discretization of (1) may be written in the form 
(see [5] )  

8 

~, cjzj - CoZo = h2[f~ + f2 + f3 + f4 + 8fo3/2 
j = l  

+ h3[po(f~ - f 3 )  + qo(f2 - f4)]/4, (2) 

where 

Cl = 4 + h(4po + 3pl + P2 - P3 + P4)/4 

+ h2(4p 2 + Po(Pl - P3) + qo(P2 - p4))/8 

c2 = 4 + h(4qo + ql + 3q2 + q3 - q4)/4 

+ h2(4q 2 + Po(qI - q3) + qo(q2 - q4))/8 

c3 = 4 - h(4po - Pl + P2 + 3P3 + p4)/4 

+ h2(4P~ - Po(Pl - P3) - qo(P2 - p4))/8 
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C 4 = 4 -- h(4qo + ql - -  q2 4- q3 + 3q4)/4 

4- h 2 ( 4 q o  2 - -  P o ( q l  - -  q3 )  - -  qo(q2 - q 4 ) ) / 8  

c5 = 1 + h(po + qo)/2 + h(q~ + P2 - -  q 3  - -  P 4 ) / 8  4- hepoqo/4 

C 6 = 1 - h(po - qo)/2 - h ( q l  4- P2 - -  P3 - -  P4)/8 -- h2poqo/4 

c7 : 1 - h ( p o  + qo)/2 + h ( q l  4- P2 - -  q 3  - -  P4)/8 4- h2poqo/4 
c8 = 1 + h(po - qo)/2 - h(q~ + P2 - q3 - -  P 4 ) / 8  --  h2poqo/4 

Co = 20 + h2(p g 4- q~) + h(p~ - P3) 4- h(q2 - -  q4) 

and where the subscripts are defined as in Fig. 1 and h 
denotes the discretization step size. 

The Navier-Stokes equations for two-dimensional steady 
f l v  of an incompressible viscous fluid are given as 

027/ 027/ 
OX 2 4 - - - O y  2 = - - W  (3) 

aRw 02W (~WOW) 
Ox2 + ~y2 - R u -~--~x + V -~-fiy = 0  (4) 

O7/ 07/ 
u = - -  v = - - -  (5) 

0y '  0x 

in the stream function vorticity form where 7/and w repre- 
sent the stream function and vorticity, respectively, u and v 
are the velocities in the x and y axes directions, and R is the 
Reynolds number. 

For the Navier-Stokes equations the fourth-order dis- 
cretization of (3) can be obtained (see [5 ] )  by substituting 
z = 7 / , f =  - w ,  p (x ,  y )  =0,  and q(x,  y )  = 0  in (2) while the 
fourth-order discretization of (4) can be obtained by sub- 
stituting z = w, p ( x ,  y )  = - Ru,  q(x,  y )  = - Rv,  a n d f  = 0. 

Note that u and v are given by (5), and a fourth-order 
discrete representation of them at the grid point 0 can be 
obtained from [-6] as 

U0 : (7 /2  - -  7/4)/3h + (7/5 + 7/6 - 7/7 - 7/8)/12h 

+ h(w2 - w4)/12 (6) 

Vo = ( 7 /3 -  7 /1) /3h-  (7 /5 -  7 /6 -  7/7 + 7/8)/12h 

4- h (w  3 - Wl)/12. (7) 

Although a higher order scheme will reduce the size of the 
ensuing linear system, for two- and three-dimensional 
problems this size will still be large and it is well known that 
convergence properties of iterative solvers such as Jacobi or 
Gauss-Seidel deteriorate as the size of the system increases. 
One way of overcoming this difficulty is through multigrid 
techniques (see [3] ,  for example), which rapidly accelerate 
the convergence of the underlying iterative scheme. 
However, in this paper we consider a defect-correction mul- 
tigrid approach. This technique uses only the fourth-order 

/ Y 
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l " ~ x  

F I G U R E  1 

discretization for defect evaluation on the finest multigrid 
level. For  the rest of the algorithm it employs a second- 
order discretization, further improving the overall efficiency 
of the algorithm. We explain this approach in the next 
section. This approach would also provide an efficient 
implementation in a parallel architecture environment since 
the defect can be evaluated separately from the multigrid 
process. 

In Sections 3 and 4 some numerical comparisons are 
made between the defect-correction approach and a 
standard multigrid implementation with a fourth-order dis- 
cretization. In all cases the defect-correction approach is 
shown to be more efficient for a given tolerance. In Section 4 
a general family of second-order discretizations is suggested 
and the effect that this parameterized family has on the per- 
formance of the defect-correction multigrid technique is 
investigated numerically. In the Appendix an analysis is 
given of the convergence behaviour of this parameterized 
scheme when applied to the Poisson equation on a unit 
square with Dirichlet boundary conditions. The theoretical 
results are shown to agree closely with the numerical results 
of Section 4 for a more general problem. 

2. A DEFECT-CORRECTION MULTIGRID APPROACH 

Since the work of Hackbush (see [7] ,  for example) in the 
late 1970s and early 1980s multigrid methods have been 
widely applied to the numerical solution of differential 
equations. The multigrid approach is used to accelerate the 
process of the underlying iterative process by a coarsening 
process, followed by a refining process which, respectively, 
halves or doubles the number of grid points in each dimen- 
sion. The effect of the coarsening process is to turn the 
smooth eigenvalues of the underlying iterative process into 
oscillatory ones which are then rapidly damped (see Brand 
[3] and Briggs [4],  for example). Defect-correction in the 
multigrid context has been studied by several authors 
[1, 2, 7]. It was demonstrated by these authors that if the 
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basic discretization is of second-order and the target dis- 
cretization is of fourth-order, then the resulting solutions 

are fourth-order. 
In this paper we develop a defect-correction multigrid 

algorithm for the Navie~Stokes  equations, in which the 
defect-correction procedure is similar to the one given 

in [23. 
Let L 2 z = f 2  and L42=f4 denote the second- and the 

fourth-order discretizations of a differential equation, 
respectively, and let z i be the initial approximation to the 
solution. Then, the defect-correction multigrid algorithm is 

as follows: 

1. Smooth z i by relaxation with respect to L2z = f2 to 

obtain z ' (  

2. Compute  d i=  f 4 -  L4z'(  

3. Perform one multigrid cycle for L 2 z = d i + L 2  z'i 
starting with z '~ to obtain z e+ 1. 

4. If [z ~+ I - zq < tolerance, stop; otherwise set z 'i = z ~ + 1 

and continue with step 2. 

The above algorithm is applied to the Navier-Stokes equa- 
tions given in (3)-(5) by first applying this algorithm to (3) 
and modifying step 4. Instead of continuing with step 2 from 
step 4 we evaluate the boundary conditions and the u and v 
values from (6) and (7). We then apply the algorithm to (4) 
and update the boundary conditions. This completes one 
step of an outer iteration procedure. This outer iteration 
procedure is completed when the tolerance criterion given 
in the fourth step of the algorithm is satisfied both for w 

and ~u. 
The order of the algorithm can be verified by applying 

this approach to the Poisson equation in the unit square, 

~ 2  z ~2  z 

dx 2 + ~y2 = - f ( x ,  y), (8) 

where the solution z is given by z = sin(3x + y) a n d f ( x ,  y) 
is obtained by differentiation of z, and with boundary values 
obtained from the exact solution. The results are sum- 
marised in Table I, where the error represents the maximum 
error over all grid points. The ratio of errors is 
approximately 16 as is to be expected from a fourth-order 

method. 

TABLE I 

Mesh size Error 

8x8 3.3 x 10-5 
16x16 2.1xlO 6 

3. APPLICATION TO NAVIER-STOKES EQUATIONS 

As a model problem we select the steady flow of an 
incompressible viscous fluid in a unit square cavity (as in 
[5]).  The differential equations for this fluid are given in 
(3)-(5). The boundary condition for (3) has ~u=0, while 
for (4) ~u x = 0 on the left and the right walls. On the top 
boundary ~Uy _ - -  1, while as on the bot tom wall ~u = 0. 
These derivatives can be approximated by the Jensen 
formula (see [9]) .  Thus on the sliding wall, y = 1, 

W 2 = ( - -  8 ~[/0 + ~2)/2h 2 + 3/h, 

while, for x = 1 

w t = ( - -  8 ~[-/o "~ ~/1 )/2h2. 

Similar formulas to w I can be found for y = 0 and x = 0. We 
note that the subscripts are again written as in Fig. 1. 
Although the Jensen formulas for the vorticity function are 
widely used in the literature, including [5],  the discretiza- 
tion order of these formulas are only two and may spoil the 
fourth-order discretization. Thus we derive a fourth-order 
discretization analogue to the Jensen formulas for the 
boundary values of (4). 

Now along x = 0, we have ~ = 0, ~x = 0, and the solution 
to (3), and so we construct a fourth-order polynomial of the 
form 

4 4 j 

bY(x, y ) =  ~ ~ aoxiy j (9) 
j = o  i = o  

satisfying these conditions. 
Since both ~u=0 and ~ x = 0 ,  necessarily ao j=a l j=O , 

j =  0 ..... 4, and substituting ~U(x, y ) in to  (3)gives 

- w = 2a2o + 6a3oX + 2a21 y + 12a4o x2 

+ 6asl yx  + 2a22(x 2 + y2). 

By assuming the origin of local coordinates at 3 in Fig. 1 we 
find 

- w3 = 2a2o, - Wo = 2a2o + 6a3o h + 12a4o h2 + 2az2h 2. 

After similar expressions are obtained for the points 1, 4, 
and 2 and noting that ~Uz + ~u4 - 2~o = a22, systems for the 
unknown a2o, a3o, a21, a4o, a31, a22 can be solved to give 

W 3 = ( - -  6 h Z w o  + h2wl - 2 ~ 2  - 2 ~ 4  - 20~o)/7h 2. 

A similar analysis gives for the bottom boundary, right 
boundary, and top boundary, respectively, 

W 4 = ( - -  6 h Z w o  + h 2 w 2  - 2~1 - 2 ~ 3  - 20~o)/7h 2 

wl = ( - 6h2wo + h2w3 - 27t2 - 2~4 - 20 ~o)/Vh 2 

w2 = (24h - 6h2wo + h2w4 - 2~1 - 2~3 - 20 ~o)/Vh 2. 

581/114/2-6 
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TABLE II 

Mesh size 2nd order 4th order 

33 × 33 0.019 0.014 
65 x 65 0.011 0.007 

TABLE III 

Mesh size Tol Method (i) Method (ii) (v, rn) 

33 × 33 10 -3 4.50 4.95 (1, 4) 
65 x 65 10 -3 50.6 64.66 
33 x 33 10 -6 8.76 9.31 
65 x 65 10 6 126.03 153.93 
33 × 33 10 -3 2.96 3.26 (2, 4) 
65 x 65 10 -3 39.78 49.16 
33 × 33 10 6 5.81 5.93 
65 x 65 10-6 86.61 95.16 
33 x 33 10 -3 2.46 2.66 (3, 4) 
65 × 65 10 -3 35.08 38.86 
33 x 33 10 6 4.66 4.76 
65 x 65 10 -6 70.7 76.2 

In order  to obtain some idea of  the error behaviour  of the 
Jensen formulae we solved the model  problem described in 
this section by applying both the second-order  Jensen for- 
mula and the four th-order  formula given above, on mesh 
sizes 33 x 33 and 65 x 65 with R = 100 and a tolerance 10 -6 .  

We also computed  approximat ions  on a mesh of size 
129 x 129 and used these results to obtain errors in the com- 
puted solution on the smaller meshes. The results given in 
Table II  are the difference between the computed  results on 
the 129 x 129 mesh and  smaller meshes at (0.5, 1 ). As can be 
seen computa t ion  with the fourth-order  formulae gives a 
reasonable improvement  in terms of the accuracy of the 
procedure. 

4. EFFICIENCY OF DEFECT-CORRECTION MULTIGRID 

In order  to investigate the efficiency of  the defect-correc- 
tion multigrid approach  the model  problem was solved with 
R = 100 on both  33 x 33 and 65 x 65 meshes using 

(i) a multigrid defect-correction method  with a second 
order central difference discretization in the multigrid steps. 

(ii) a multigrid method with a fourth order  discretiza- 
tion of  the model  equations. 

In both cases a fourth-order  approximat ion  of  the bound-  
aries was used and for each method the problem was 
solved twice with an error convergence tolerance of 10 3 
a n d  10 - 6  for both  ~ and w. The implementat ion was based 
on a V-cycle with a Gauss-Seidel  smoother  and for the 
boundary  values of  w a damping factor was employed. As an 
interpolation opera tor  the values at the c o m m o n  mesh 
points were directly transferred, while the values at the new 
grid points were obtained by averaging either two or four 
nearest mesh points. Direct injection of the residual was 
used as the restriction operator  from fine to coarse mesh. In 
the multigrid implementat ion v iterations of  the smoothing 
process were performed at each level for the stream function 

and m iterations for the vorticity funct ion w. The mini- 
mum level of the multigrid procedure as a 17 × 17 mesh. The 
elapsed C P U  time in minutes on a VAX 6310 for both cases 
is given in Table III .  A perusal of Table I I I  shows that for 
both tolerances and mesh sizes the defect-correction 
approach  is more  efficient. Furthermore,  there is a substan- 
tial improvement  in efficiency to be made (by almost a fac- 
tor of 2) if the number  of smoothing operat ions  at each level 
for the stream function is increased from one to three. After 

this observat ion it is worthwhile to check whether a full 
multigrid or W-cycle implementat ion of the multigrid could 
further improve the convergence rate of the method.  The 
C P U  time from the W-cycle and the full multigrid is given 
in Table  IV to compare  with the results in Table III .  T h e  
results in Table IV were obtained with a 33 x 33 mesh, v = 1 
and m = 1. For  the full multigrid we started with a 17 × 17 
mesh and 10 -2 tolerance for coarser mesh. The min imum 
level for the full multigrid was a 9 × 9 mesh. 

In addition, the defect-correction algori thm given here 
could also possibly be improved further by searching the 
effect of  'employing different lower order discretization 
techniques in multigrid steps. As an illustration we use the 
following parameterised discretization of  (3): 

(1 - - 4 a ) ( ~ 1 +  ~ 2 +  ~3 + ~ 4 ) - - 4 ( 1  - -2a ) (~0 )  

+ 2a(~5 + ~ 6 +  ~ 7 +  ~8) 

= - h 2 [ a ( w l  + w 2 + w 3 + w4).-Jt - (1 - 4 a )  Wo]. (10) 

In this case it is easy to show that the difference scheme is 
stable for 0 ~< a < 1 and gives the second-order discretization 
of  (3) except if a =  1 ,  in which case a fourth-order  dis- 
cretization is obtained. The case a = 0 produces the central 
difference discretization of  (3). 

In  order  to test the sighificance that the parameter  a may  
have in our  implementat ion we implemented method  (i) 
with the parameterized discretization given in (10) for 
various values of a with the mesh size 65 × 65, Gauss-Seidel  
smoothing,  parameters (v = 1, m = 1 ), and tolerance 10 -3 .  

Table V was obtained. 

TABLE IV 

W-cycle Full multigrid 

Tol Method (i) Method ( i i )  Method (i) Method (ii) 

10 3 2.38 3.50 5.77 5.82 
10 -6 5.58 8.11 5.88 5.97 
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TABLE V 

a CPU minutes 

0 49.76 
0.0625 47.15 
0.0833 45.41 
0. ! 25 43.48 
0.2 38.43 
0.22 36.46 
0.24 34.85 
0.249 33.96 

It is difficult to determine without further investigation 
how much this variance of a with efficiency is problem 
dependent and what the dependence on v and m is. In this 
case, however, there seems to be approximately a 33% 
improvement in efficiency as a ranges from 0 to 0.25. 
Furthermore, the efficiency appears to be a monotonic 
decreasing function of a. In the Appendix at the end of this 
paper we present a convergence analysis of the iterative 
behaviour of both the Jacobi method and the Gauss-Seidel 
method for a discretization based on (10). 

Another advantage that can be gained from our defect- 
correction approach arises from the fact that upwind dif- 
ferencing schemes introduce artificial viscosity/diffusion 
terms into the solution to improve the convergence 
behaviour of problems with large Reynolds numbers. In 
some cases these artificial terms in the numerical solution 
are not desirable, and our fourth-order defect-correction 
approach eliminates these undesirable cases even if upwind 
differencing schemes are employed in the defect phase of the 
defect-correction algorithm, because the overall results 
depend on the fourth-order scheme employed in the correc- 
tion phase of the algorithm. 

APPENDIX: CONVERGENCE OF A GENERAL 
SECOND-ORDER SCHEME 

In this representation the tridiagonal matrix with g on the 
diagonal, h on the upper subdiagonal, and f on the lower 
subdiagonal is written as (f, g, h). Before studying the con- 
vergence behaviour of the Jacobi and Gauss-Seidel schemes 
applied to (11 ) and (12) the following lemma is presented. 

LEMMA 1. I f  there exists a non-zero vector u such that 
( f ,  g, h) u = O, then necessarily g = - 2 x f l fh  cos( krc/(m + 1 )), 
k = l , . . . , m .  

Proo f  The result is a trivial consequence of the well- 
known fact (see Muir [8 ], for example) that the eigenvalues 
of (f, g, h) are given by 

2k= g + 2 ~ ~ c o s  kn m + 1' k = 1 ..... m. 

We now present the main result of this appendix. 

THEOREM 1. I f  p j ( a )  and pc (a )  represent the spectral 
norms o f  the amplification matrices of, respectively, the 
Jacobi and Gauss-Seidel  methods when applied to (11 ) and 
(12), then 

p G ( a ) -  (pj (a))  2 = O(h4) ,  

Furthermore, the eigenvalues o f  R j  (the amplification matr ix  
corresponding to the Jacobi method) satisfy 

(4a - 1 ) 
- ( o j +  

a 

2(1 - 2 a )  0j0k, 

j, k = 1, ..., m, 

jTT 
- -  . . . ,  0/= --2COSm+ 1, j = l ,  m 

1 
p j ( a ) = l  - - h  2+O(h4). 

2(1 - 2 a )  

If the second-order discretization scheme introduction 
(10) is applied to the standard Poisson equation on a unit 
square with Dirichlet boundary conditions a linear system 
of the form 

A x = b  (11) 

is obtained. Here A is a symmetric block tridiagonal matrix 
which can be represented as (B, T, B), where B and T are 
tridiagonal matrices of dimension m with 

B =  (2a, l - 4 a ,  2a), 

T =  (1 - 4 a ,  - 4 ( 1 - 2 a ) , l - 4 a ) .  
(12) 

Proo f  Consider first the case of the Jacobi method. 
If 2 and u =  (u r ..... UTm) r represent an eigenvalue and 
corresponding eigenvector of Rj then 

Cu=O,  C = A + ( 2 - 1 ) D ,  D = diag(A). (13) 

But C can be written in block triangular form (B, F, B) and 
if B is nonsingular and G =  B - ' F ,  then (13) leads to the 
recurrence relation 

u 2 = - -  G u l  

Urn 1 = - - G u m  

uj + l = - Guj - uj_ , , j = 2, ..., m -- 1. 

(14) 
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Let uj = &_  l ( G )  b/l ,  where pj(x) is a po lynomia l  of degree 
j defined by 

p l ( x ) =  x, p2(X)= X 2 -  1, 

pj(x) = - x p j  l ( x ) -  Ps 2(x), j =  3 ..... 

then (14) leads to 

Again ( F - O j B ) u l  = 0 ,  where F - O j B  is the t r idiagonal  
matr ix  ( f , g , h ) ,  where f = 2 ( 1 - 4 a ) - 2 0 j a ,  g = 
- 4 2 ( 1  - 2 a ) - O s ( 1  - 4 a ) ,  h =  1 - 4 a - 2 O j a ,  and an 
appl icat ion of L e m m a  ! gives 

g = - 2  COSm+ 1, k = l  ..... m, 

pm(G) ul=O. 

Suppose now that  Ul is an eigenvector of  G and 0 the 
corresponding eigenvalue then 

U=(uT ,  pI(O)/A T ..... pn,_l(O) blT) T, pm(O)=O. (15) 

o r  

- 4 t ( 1  - 2 a ) -  Oj(1 - 4 a )  

, ,9, 

Using L e m m a  1 we see that  0 can take on m values given by where t = x/2~. Hence t must  satisfy the cubic polynomia l  

jT~ 
0 j =  - 2 cos - - - - -~ ,  j = l  ..... m. (16) 

m +  

But ( F - O j B )  ul = 0 ,  where F - O j B  is the tr idiagonal  
matrix (f, g, f )  w i t h f  = 1 - 4 a - 2 O j a  and g = - 4 2 ( 1 - 2 a ) -  
0j(1 - 4 a ) ,  and again  applying L e m m a  1 it is found that  

- 4 2 ( 1  - 2 a ) -  ~ ( 1  - 4 a ) =  0k(1 - 4 a  - 2 0 j a ) ,  

j , k = l  ..... m, 

so that  the eigenvalues of Rj can be writ ten as 

16t3(1 -- 2a) 2 + 2t20j( 1 - -  4a)(4 -- 8a + aO~) 

+ t((O~ - 02)(1 -- 4a) 2 - 4a20202) 

+ 20jO~a(1 - 4a) = 0. 

Unfor tunate ly ,  it is not possible to obta in  a closed-form 
expression for the eigenvalues associated with the 
Gauss-Se ide l  i teration for all values of a, but writing 

Oj=-2+jZh2+O(h4) ,  h = - -  
m + l  

(20) 

A j k  

4 a -  1 a 
4 ( 2 a -  1) (0 i  + Ok)+ 2(1 - 2 a )  0j0k, 

j , k = l  ..... m. (17) 

a n  O ( h  4) expansion for p j ( a )  and p6(a) can be found. 
Substi tut ing (20) into (17) gives for the Jacobi  case, after 
simplification, 

Suppose now that  2 and u are, respectively, the eigenvalue 
and eigenvector of  the corresponding i terat ion matr ix  R6  
associated with the Gauss-Seide l  scheme; then 

1 
2jk = 1 4(1 - 2a) ( j 2  nt - k 2) h 2 + O ( h  4) 

Cu = 0, C = A + (2 - 1 )(L + D), A = L + D + U. and, hence, 

In this case letting G = B lF leads  to the recurrence relation 

bl 2 ~ - -  Gu 1 

bl m l = - G u m / 2  

uj+ I = - G u j -  2uj 1, j = 2, ..., m -  1. 

If  again 0 is an eigenvalue of G and Ul is the corresponding 
eigenvector, then an appl icat ion of L e m m a  1 to the matr ix  
(2, 0, 1 ) gives 

J~ 0 j =  - -2  cos j =  1, m. (18) 
m + l '  ""' 

1 
pj(a)  = 1 - -  h 2 -t- O(h4) .  

2(1 - - 2 a )  

A similar substi tution of (20) into (19) gives 
Gauss-Se ide l  case, after simplification, 

%~jk = 1 
4(1 - 2a) 
_ _  ( j 2  + k 2) h 2 + O(h 4) 

and, hence, 

( p j ( a ) )  2 --  pc(a))  = O ( h 4 ) ,  

(21) 

for the 
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As a c o n s e q u e n c e  of T h e o r e m  1 we see tha t  

p j(0)  ~ 1 2 ' PJ ~ 1 -- h 2 

p G ( 0 ) ~ l - - h  2, p G ( ~ ) ~ l - - 2 h  2. 

Since the  scheme (10) is s table  for a t  [0, ¼) we see tha t  
bo th  i t e r a t i on  schemes will t ake  a p p r o x i m a t e l y  hal f  the 
n u m b e r  of  i t e ra t ions  to o b t a i n  a specified to le rance  as the 
p a r a m e t e r  a moves  f rom 0 to ¼. A l t h o u g h  a = ~ leads  to a 
f o u r t h - o r d e r  d i sc re t iza t ion  scheme this is n o t  a n  o p t i m a l  
va lue  in  te rms  of convergence .  These  theore t ica l  resul ts  are 
b o r n e  ou t  by the c o m p u t a t i o n a l  results  p resen ted  in  the 

p rev ious  sect ion for the G a u s s - S e i d e l  case. 
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